SHARP SERVICE MANUAL

GAME TELEVISION SIGMA 9400 CHASSIS Chassis No. 19M1

моде 19SV111

In the interests of user-safety (Required by safety regulations in some countries) the set should be restored to its original condition and only parts ideritical to those specified should be used.
coerriose
Cowectar
QSOCN7202CEZZ
\$400c RICO ϕ Uss CESS $2300^{5}=44$

CONTENTS

- IMPORTANT SERVICE SAFETY PRECAUTION N... 2

- LOCATION OF USER'S CONTROLS ... 4
- REMOVAL DF CABINETtanemenum.. 6
- INSTALLATION AND SERVICE INSTRUCTIONS .new.. 8
- TROUBLESHOOTING TABLE .. 10

- PRINTED WIRING BOARD ASSEMBLES - 17
- BLOCK DIAGRAM 21
- SOLID STATE DEVICE BASE DIAGRAM \ldots... 26
- SCHEMATIC DIAGRAM AND WAVEFORMES .. 28
- REPLACEMENT PARTS LIST 35
- PACKING OF THE SET .

IMPORTANT SERVICE SAFETY PRECAUTION (Continued)

- Use an AC volfmeter having with 5000 ohm per volt, or highec, sensitivity to measure the AC voltage drop acrass the resistor.
* Make contact with the test probe on all exposed metal parts having a return path to the chassis (antenna, metal cabinet, screw heads, knobs and control shafts, escutcheon.
etc.) and measure the AC voltage drop across the resistor
All checks must be repeated with the $A C$ cord plug connection reversed (if neressary, a nonpolarized adapter plug may be used only for the purpose of completing these checks)
Any current measured riust not exceed 0.5 milliamps.
Any measurements not within the limits outined above are indicative of polential shock hazard and corrective action must be taken before retutning the set to the customer.

SAFETY NOTICE

Manyelectrical and mechanical parts in melevision receivers have special safety-related sharacteristics.
These characteristics are often not evident from visual inspection, nor can protectian afforded by them be necessarily increased by using replacement components rated for higher voltage, wattage, etc.
Replacement parts which have these special
safety characteristics are identified in this manual: electrical compenents having such features are identified by " Δ " and shaded areas in the Replacement Paris Lists and Schematic Diagrams. For continued protection, replacement parts must be identical to those used in the originat circuit. The use of a substitute replacement parts which do not have the same safety characteristics as the factory recommended replacement parts shown in this service manual. may create shock, fire, X-radiation or other hazards.

ELECTRICAL SPECIFICATIONS

VHF ANTENNA INPUT IMPEDANCE 75 ohm Unibalanced
UHF ANTENNA INPUT IMAPEDANCE 300 ohm Balanced
CONVERGENCE Magnetic
FOCUS Ai-si-Potential Electuostatic
AUDIO POWER OUTPUT RATING 1.2W (at 10\% distortion)
INTERMEDIATE PREQUENCIES
Picture IF Carrier Frequency 45.75 MHz
Sound IF carrier Frequency 41.25 MHz
Color Sub-Carrier Frequency 48.17 MHz (Nòminal)
PICTURE SIZE Approx: 185 sq in.
POWER INPUT 120 V AC 60 Hz
POWER RATING 95 W
SPEAKERSIZE 4. PM, 0.52 oz. Mag
VOICE COIL IMPEDANCE 8 ohm at 400 Hz
SWEEP DEFLECTION Magnetic
TUNING RANGES VHFChannels 2 thru 13
UHF-Channels is thri 83
CATV Channels it thri 65,95 thru 99

LOCATION OF USER'S CONTROL (TV)

Infrared Remote Control

LOCATION OF USER'S CONTROL (Continued) (GAME)

CONNECTING THE CONTROLLERS TO THE TV

Both controllers are identical and may be connected to eisher controller socket However, the controller connected to controller socket I becomes Controller 1. The distinction is important when selecting and starting games, since only Controller 1 is used to select and start games.

Operation of Controls (GAME)

1. Turn the power on by pressing the POWER ON-OFF BUTTON on the set or on the Remote Control.
2. Set the TV mode by pressing the TV/GAME SELECTOR on the set or on the Remove Control.

CAUTION:

ALWAYS MAKE SURE THE TVIGAME SELECTOR IS SET THE TV MODE BEFORE INSERTING OR REMOVTNG A GAME PAK.

REMOVAL OF CABINET

How to detach the game unit from the TV set

1. Unscrew the six rear cabinet set-screws and remove the rear cabinet.
2. Disconnect the game unit connectors (EB, N, V, A and EA) from the TV set.

REMOVAL OF CABINET (Continued)

How to detach the game unit from the cabinet

1. Unscrew the eight top cabinet set-screws and remove the top cabinet.
2. Unscrew the elever shielding case set-screws and the four chassis set-screws. Now the game PWB (PWB-D) can be drawn out.

INSTALLATION AND SERVICE INSTRUCTIONS

Note: (1) When performing any adjustments to resistor controls and transformers use non-metallic screwdriver or TV alignment tools.
(2) Before perfoming adjustment, TV set must be on at least 15 minutes.

CIRCUIT PROTECTION

The receiver is protected by a 4.0A fuse (F701), mounted on PWB-A, wired into one side of the $A C$ line input.

X-RADIATION PROTECTOR CIRCUIT TEST

After service has been performed on the horizontal deflection system, high voltage system, or $+B$ system, the X Radiation protection circuit must be tested for proper operation as follows:

1. Apply 120 V AC using a variac transformer for accurate input voltage.
2. Allow for warm up and adjust all customer controls for normal picture and sound.
3. Check the voltage of test point TP601. (It's voltage should be about 18 V DC.)
4. Connect the pin (6) of IC501 to TP601 through a short clip lead.
in this case, the operation of horizontal oscillator is stopped.
5. To start operation, remove the above short clip lead and touch the TP602 to chassis ground (TP603) with a short clip lead. In this case remove short clip lead as soon as the set operates again with a normal picture.
6. Connect TP651 to TP652 and see that the operation of horizontal oscillator then stops. Next, make sure that the set operates with a normal picture by the method of Step5.
7. If the operation of the horizontal osc. does not stop in steps 4 and 6 , the circuit must be repaired before the set is returned to the customer.

HIGH VOLTAGE CHECK

High voltage is not adjustable but must be checked to verify that the receiver is operating within safe and efficient design limitations as specified checks should be as follows:

1. Connect an accurate high voltage meter to the CRT anode.
2. Operate receiver for at least 15 minutes at 120 V AC line voltage, with strong air signal or a properly tuned in test signal.
3. Set SW851 on PWB-B to "OFF" (center) position.
Note that loss of luminance will occur.
4. Rotate Screen control (on T652) to minimum (CCW) end of its rotation.
5. The reading should be approximately 26.5 kV at zero beam.
If a correct reading cannot be obtained, check circuitry for malfunctioning components.
Upon completion of voltage check, readjust screen control for proper operation and set SW851 to "ON" position.

INSTALLATION AND SERVICE INSTRUCTIONS

(Continued)

FIELD ADJUSTMENT

RF-AGC ADJUSTMENT

1. Selecta local channel.
2. Turn RF-AGC control (R2) 4) fully clockwise.

As a result noise appears on picture, then slowly turn the RF-AGC control (R214) counterclockwise until noise disappears.
3. Check that no noise appears on other channels.

SUB-BRIGHTNESS CONTROL

1. Select a local channel
2. Turn Picture control (a part-of R462) fully clockwise and set Brightness controf fa part of R462) at the center position.
3. Turn'Sub-Brightness controt (a part of R462) to obtain normal brightness of the picture.

NOTE If All field adjustments mentioned can be performed without test equipment.
NOTE 2: As this model has "Built in AFT", AFT is alwilys in "ON" pasition. If AFT should be "OFF", short between TP1003 and TP1004.
NOTE 3: After serviding the set, check that the aging switch SW1801 is set at "OFF" position. This aging switch is to be used only for the factory inspection; at "ON" position, it won't allow the set to be rumed off.

- HORIZONTAL CENTERING

1. Select a local chammel
2. Adjust the Horizontal Centering 5 witch (5W751) an PWVB-C tabest picture positian.

VERTICAL SIZE ADIUSTMENT

1. Select a local channel
2. Turn fully counterciockwise the Brightness and Picture controls to dim sereen (in the state where the top and bottom of plcture cam be recognized.)
3. Adjust Vertical size controf (a part of R462) fur approximately $1 / 8$ to $1 / 4$ inch over-scan at top and bottom of picture screen.

FOCUS ADJUSTMENT

1. Select alocai channel.
2. Set Brightness and Picture controls at a normal viewing level.
3. Adjust Focus control (part of 7652) for sharp seanning lines and/or sharp picture.

TROUBLE SHOOTING TABLE

Malfunctions not Traceable to Game Deck

Display Fails to Appea (only noise)
Is TV operation normal, when select the TV/GAME switch to TV position ?

TROUBLE SHOOTING TABLE (Continued)

Controller Does't Function.

TROUBLE SHOOTING TABLE (Continued)

Malfunctions Traceable to Game Deck

* Prior to replacing parts:

Check the following items before referring to the tables on the following pages and repairing the Game Unit.

1. Check the contact condition of card connector 72P.
2. Check the soldering of all parts.
3. Visually inspect for short circuits.
4. Check that all parts are mounted correctly.
5. Check for ICs that heat up abnormally while power is on (other than IC5 PPU).
6. Check for splitting or cracks in the resistor arrays, ceramic capacitors, ceramic oscillators, etc.

Symptom	Repair Procedure	Location of Fault (in order of probability)

Display in One Color

Sound normal.	1. Check for faulty soldering. (1) 1 C 5 PPU IC5 PPU faulty.
Sound normal.	1. Check for faulty parts or faulty soldering near the crystal oscillators (labeled X1 and X2 on the Game Unit). 2. Measure the oscillation frequency and input voltage at IC6 CPU pin (29) and IC5 PPU pin (18). The oscillation frequency should be 21.5 MHz . (see diagram below). 3. Measure the oscillation frequency and input voltage at IC10 CIC pin (6). The ascillation frequency should be 4 MHz . (see diagram below). 4. Check soldering for IC6 CPU, IC1 S-RAM and IC3. Faulty IC6 CPU, IC1 S-RAM, IC5 PPU, IC3 or IC9. (1) IC6 CPU (2) IC1 S-RAM (3) IC5 PPU (4) $\mathrm{X}_{1}, \mathrm{X}_{2}$ (5) IC3 (6) IC7, IC8 (7) MP1, MP2 (8) IC9 (9) Card connector "DE" 72P (10) Faulty soldering or a break in the conductor pattern.
	21.5 MHz (NTSC)

TROUBLE SHOOTING TABLE (Continued)

Symptom	Repair Procedure	Location of Fault (in order of probability)

Display Black

Sound normal.	1. Make sure that picture signal is being output from ICS PPU pin (21). 2. Make sure that soldering for Q1, FCZ, Q4, Lt, R23 and R2 is secure 3. Check for other faulty soldering of breaks in the conductor pattern.		IC5 PPU Faulty soldering or a break in the conductor partern.
Nosound.	4 Is there faulty soldering or a faulty part in the nscillation circuit (near $\times 1, Q 2$ or Q3)? 2. Are oscillation frequencies and input voftage levels of IC6 CPU pio (29) and IC5 PPU pin (13) normal ? Fautcy soldering or a break in the conductor pattern.	(1) (2) (3)	$\times 1$ Faulty soldering do a break in the conductor patterm. IC10

Display Flashes

Display repeatedly appears and dies.	1. Is the Game Pack normal ? is itinstalied correctiy? 2. Is there any faulty soldering on a break in the condoctor pattem? 3. 15.1610 raulty? ce9 faulty.	(1) (2) (3) (1)	icio Card conmegior DE 72 P Faulty soldering or a break in the conductor pattern. (C.)

Normal Display Doesn't Appear

Abnormality oceurs after playing the game for a long time.	1. Heat up ICS PPU using a wair dryer or the like. If faulty symptoms appear, then the PPU is faulty. 2. Hed up IC6 CPU using a hair dryer or the like. If faulty symptoms appear, then the CPU is faulcy.	(1) ICS PPP (2) IC6 CPU
Moving tharacters OK, Buthonmowing characters and background abnormal.	1. Is there faility soldering or a break in the conductor pattern in or near ICA S-RAMr 1C2. IC9 HC139 or card connector "DE" 72p? 2. Is ICA S-RAM, IC2, C9 NCUC4P or ICS PPd faulty? Card connector "DE" 72P taulty.	(1) ICA S-RAM (2) lCl (3) Foulty scidering or a break in the conouctor pastern (4) 169 (5) Card comnecior "OE"72P (6) IC5 PPO

TROUBLE SHOOTING TABLE (Continued)

Symptom	Repair Procedure	Location of Fault (in order of probability)

Normal Display Doesn't Appear

Normal Display, But Operation Via Controller Not Possible

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Game Select symbol } \\ \text { does not appear, or } \\ \text { is shaped } \\ \text { abnormally if it does } \\ \text { appear. }\end{array} & \begin{array}{l}\text { 1. Is IC5 PPU faulty? } \\ \text { Faulty IC6 CPU. }\end{array} & \begin{array}{l}\text { (1) } \\ \text { (2) }\end{array} & \text { IC5 PPU CPU }\end{array}\right]$

TROUBLE SHOOTING TABLE (Continued)

Symptom	Repair Procedure	Locetion of Fault (in order of probability)

Display Normal, But Sound Abnormal

Abnormal melody.	i. Is there faulty soldering of a break. In the conductor pattern in R3, R4, R6, R7 or R8 ? Fatily IC6 CPU.	(1) C 6 CPU (2) Faulty soldering or a break in the conductor pattern.
No sound.	1. Is there faulty soldering of a break in the conductof psttern near IC9, C23, Q3; R21, C48 or FCl ? 2. Is IC9 faulty? 3. Are there breaks in the conductor pattern near the audio signal circuit? 4. Faulty IC6 CPU,	(7) IC9 HCUO4 (2) $\mathrm{C} C 6 \mathrm{CPL}$ (3) C23, FCl, Q5, R21. C48 (4) Faully soldering or a break in the conductor pattern.

PRINTED WIRING BOARD ASSEMBLIES

PWVB-H Wiring side

PWB-E Wiring side

PVBE-F Wiring Side

PWB-G Wiring Side
1-

$\mathrm{PWB}-\mathrm{E}$ Wiring Side

PWB-D Parts Side

PWB-D Solder Side

2	3

PRINTED WIRING BOARD ASSEMBLIES (Continued)

PWB-A Wiring Side

IMPORTANT SERVICE SAFETY PRECAUTION

- Service work should be performed only by qualified service technicians who are thoroughly familiar with all safety checks and servicing guidelines which follow:

WARNING

1. For continued safety, no modification of any circuit should be attempted.
2. Disconnect AC power before servicing.
3. Semiconductor heat sinks are potential shock hazards when the receiver is operating.
4. The chassis in this receiver has two ground systems which are separated by insulation material. The non-isolated (hot) ground system is for the $+B$ voltage regulator circuit and the horizontal output circuit. The isolated ground system is for the low +8 DC voltages and the secondary circuit of the high voltage transformer.
To prevent electrical shock use an isolation transformer between the line cord and power receptacle, when servicing this chassis.

SERVICING OF HIGH VOLTAGE SYSTEM AND PICTURE TUBE

When servicing the high voltage system, remove the static charge by connecting a 10 k ohm resistor in series with an insulated wire (such as a test probe) between the picture tube ground and the anode lead. (AC cord should be disconnected from AC outlet.)

1. Note that the picture tube in this receiver employs integral implosion protection.
2. Replace with tube of the same type number for continued safety.
3. Do not lift picture tube by the neck.
4. Handle the picture tube only when wearing shatterproof goggles and after discharging the high voltage anode completely.

X-RADIATION AND HIGH VOLTAGE LIMITS

1. All service personnel should be aware of the procedures and instructions covering X radiation. The only potential source of X-ray in current solid state TV receivers is the picture tube. However, the picture tube does not emit measurable X-Ray radiation if the high voltage is as specified in the "High Voltage Check" instructions.It is only when high voltage is excessive that X -radiation is capable of penetrating the picture tube shell which includes lead in glass material. The important precaution is to keep high voltage below the maximum level specified.
2. It is essential that servicemen have available at all times an accurate high voltage meter. The calibration of this meter should be checked periodically.
3. High voltage should always be kept at the rated value -no higher. Operation at higher voltages may cause a failure of the picture tube or high voltage circuitry and, under certain conditions, may produce radiation in excess of desirable levels.
4. When the high voltage regulator is operating properly there is no possibility of an Xradiation problem. Every time a color chassis is serviced, the brightness should be tested while monitoring high voltage with a meter to be certain that it does not exceed the specified value and is regulated correctly.
5. Do not use a picture tube other than that specified, and do not make unrecommended circuit modifications to the high voltage circuitry.
6. When trouble shooting and taking test measurements on a receiver with excessively high voltage,avoid being unnecessarily close to the receiver. Do not operate the receiver longer than is necessary to locate the cause of excessive voltage.

FIRE AND SHOCK HAZARD CHECKS

Before returning the receiver to the user, perform the following safety checks:

1. Inspect all lead dress to make certain that leads are not pinched, and check that hardware is not lodged between the chassis and other metal parts in the receiver.
2. Inspect all protective devices such as nonmetallic control knobs, insulating materials, cabinet backs, adjustment and compartment covers or shields, isolation resistor-capacity networks, mechanical insulators, etc.
3. To be sure that no shock hazard exists, check for current leakage in the following manner:

- Plug the AC cord directly into a 120 volt $A C$ outlet, (Do not use an isolation transformer for this test).
- Using two clipleads, connect a 1.5 k ohm, 10 watt resistor paralleled by a $0.15 \mu \mathrm{~F}$ capacitor in series with all exposed metal cabinet parts and a known earth ground, such as an electrical conduit or electrical ground connected to an earth ground.

PWB-C Wiring Side

BLOCK DIAGRAM

BLOCK DIAGRAM
IC1 and IC4: R H-iX1
PINS ARRANGEMENT

Pin	Function
$A_{0} \sim A_{1}$	Address Input
$\overline{C S}$	Chip Select
$\overline{O E}$	Output Enable
$\overline{W E}$	Write Enable
$I / O_{1} \sim 1 / O_{8}$	Data Input/ Output
$V_{\text {CC }}$	Power
$G N D$	Ground

A_{7}	510	24	V_{CC}
A_{6}	$\square 2$	23	A_{8}
A_{5}	3	22	$\square \mathrm{Ag}_{9}$
A_{4}	54	21	马 $\overline{W E}$
A_{3}	5	20	$\square \overline{O E}$
A_{2}	56	19] A_{10}
A_{1}	\square^{7}	18	CS
A0	8	17	110_{8}
$1 / O_{1}$	99	16	-1/07
$1 / \mathrm{O}_{2}$	510	15	[1/06
$1 / \mathrm{O}_{3}$	G11	14	$1 / O_{5}$
GND	-12	13	1100

BLOCK DIAGRAM

Output Control Input

Output
Data Input

Output

Data Input

Output

Enable Input

Input

Output

BLOCK DIAGRAM (Continued)

IC6: RH-iX0821CEZZ

IC7 and IC8: VHITC40H368P/

EQUIVALENT CIRCUIT

SOLID STATE DEVICE BASE DIAGRAM

Memo

NOTE:

1. The un Mit M

VOLTAG

1. All DC connec line v norma 2. All vo signal,

This cir circuits improve

DESCRIPTION OF SCHEMATIC DIAGRAM

NOTE:

1. The unit of resistance "ohm" is omitted (K:1000 ohms, M:1 Meg ohm).
2. All resistors are $1 / 8$ watt, unless otherwise noted.
3. All capacitors are $\mu \mathrm{F}$, unless otherwise noted P: $\mu \mu \mathrm{F}$,
4. (G) indicates $\pm 2 \%$ tolerance may be used.
5. 1 Indicates line isolated ground.
6. $\stackrel{1}{\gamma}$ indicates hot ground.

VOLTAGE MEASUREMENT CONDITIONS:

1. All $D C$ voltages are measured with $A C$ voltmeter connected between points indicated and chassis ground, line voltage set at 120 V AC and all controls set for normal picture unless otherwise indicated.
2. All voltages measured with $1000 \mu \mathrm{~V}$ B \& W or Color signal,
```
\triangle ANDSHADED ( ) COMPONENTS
    = SAFETY RELATED PARTS.
    MARK = X-RAYRELATED PARTS.
```

This circuit diagram is a standard one, printed circuits may be subject to change for product improvement without prior notice.

WAVEFORMS

WAVEFORM MEASUREMENT CONDITIONS:

1. Photographs taken on a standard gated rainbow color bar signal, the tint setting adjusted for proper color. The wave shapes at the red, green and blue cathodes of the picture tube depend on the tint, color level and picture control.
2. - indicates waveform check points (See chart, waveforms are measured from point indicated to chassis ground)

(5) $0.17 \mathrm{Vp}-\mathrm{p}$	(6) $0.2 \mathrm{Vp}-\mathrm{p}$	(7) $2.8 \mathrm{Vp-p}$	(8) $1.2 \mathrm{vp}-\mathrm{p}$
Horiz Rate	Honz. Rate	Horiz. Rate	Horiz. Rate

(9) $3.2 \mathrm{Vp-p}$	(10) $130 \mathrm{Vp}-\mathrm{p}$	(11) $100 \mathrm{Vp-p}$	(12) $155 \mathrm{Vp-p}$
Horiz. Rate	Horiz. Rate	Horiz. Rate	Horiz. Rate

(13) $0.7 \mathrm{Vp}-\mathrm{p}$	(14) $1.8 \mathrm{Vp}-\mathrm{p}$	(15) $50 \mathrm{Vp}-\mathrm{p}$	(16) $0.8 \mathrm{Vp}-\mathrm{p}$	
$4 \square$				\square
Horiz. Rate	Horiz, Rate	Horiz. Rate	Horiz, Rate	

(17) $2 \mathrm{vp}-\mathrm{p}$	(18) $28 \mathrm{vp}-\mathrm{p}$	(19) $1000 \mathrm{vp}-\mathrm{p}$	(20) $400 \mathrm{vp}-\mathrm{p}$	
L				
Horiz. Rate	Horiz. Rate	Horiz. Rate	Horiz. Rate	

(21) $14 \mathrm{vp}-\mathrm{p}$	(22) $6 \mathrm{Vpp}-\mathrm{p}$
\square	
Horiz. Rate	Horiz. Rate

This circuit diagram is a standard one, printed circuits may be subject to change for product improvement without prior notice.

7

REPLACEMENT PARTS LIST

SAFETY NOTL - Components manked wish- $\boldsymbol{2}[\Delta$) have spesial sharaceristics important to safety, Before replacing any these componenti, read corefully the SAFETY NO NCE on page 3 pf tive Service Manual, Components maried whith an $(\mathbf{\Delta})$ are resated to X - Pay Protection orsuit:
HOW TO ORDER REPLACEMENT PARTS - To have your ondor siliod prompts and cortectig. please furnah the lallowing information:

401
40
41
60
60
610
612
613.
709.

712,
714.
801.

803,
804,
805.

1108
1
1171,
1112,
1113.
1114.

1125,
1202
1210 .
1211,
1213,
1214.

1215,
1301.

1302,
1401,
1402,
1501,
1502,
1504,
1505,
1507,
1508,
1509,
1802,
2002
D404
D405
D501
$\triangle 0602$
D605
A
\triangle D608
D640
D701

3	$1 n$
1	15

DIODES (Continued)

DIODES (Continued)				
\triangle D707	RH-DX0181 CEZZ or	J	RG2V	$A E$
	$\begin{gathered} \text { RH-DX0202 CEZZ } \\ \text { or } \end{gathered}$	1	EU-2V	$A D$
	RH-DX0226 CEZZ	5	RGP10]	$A C$
\triangle D708	RH-DX0131 CEZZ	1	EU-1	$A C$
D710	RH-EX0021TAZZ	J	Zener Diode, 11 V	$A C$
D713,	RH-EX004 7 CEZZ	J	Zener Diode, 12V	$A B$
1613				
Di151.	RH-EX0217CEZZ	J	Zener Diode, 15 V	$A B$
1152,				
1520				1
1				
1524,				
1526.				
1531				
D1212	RH-EX0101CEZZ	1	Zener Diode, 2.7V	$A B$
D1503,	RH-EX0161 CEZZ	1	Zener Diode, 7.5V	$A B$
1515	or			
	RH-EX0147 CEZZ	1		$A C$
01506	RH-EX0024 CEZZ	1	Zener Diode	AB
D1512,	RH-EX 0103 CEZ2	1	Zener Diode, 5.6V	$A B$
1601				
01527	RH-EX 00088 CEZZ	1	Zener Diode	$A B$
1				
1530				
D1602	RH-EXQ131 CEZZ	1	Zener Diode, 5.1V	AB
D1909	RH P P X 127 CEZZ	1	LED.	$A C$
			Channelladicator	
D2001	RH-PX0195CEZZ	1	LED,	$A D$

Ref．No，	Perting．	\checkmark	Description	Code	Bef．No．	Partio．	＊	Description	Codo	
COILS					CAPACITORS					
$\begin{gathered} 1202 \\ 203 \end{gathered}$	VP－RFRB 2×0000	1	0.82204	$A B$	Q209．	VCEAGAICWE37M	1	$330 \quad 16 \mathrm{~V}$	$A C$	
1205	VP－MER 5 － 6 MODOO	1	0．56 ${ }^{1 /}$	AB	319.					
L206	RCHLIE4735ERZ	J	Pit Detsetar	$A D$	432，					
L207	RCIU0S 10 CE2Z	1	A 51	AF	444，					
L393	RCLLF037ACERZ	1	found Dptector	ALI	T204．					
Csas．	VP＋KFF 000 K 0000	j	103H	As	1308.	$=$	In			
809					1696					
1201.					C315	VCEAGAICW108M	1	$100076 \mathrm{Y}$	$A D$	
$+501$								Electrolytic		
$1502 .$					cevr．	VCESAAICW476M	1	4） $16 \times(\mathbb{N}, 5)$	$A C$	
1601					－01			Eiectroytic		
1302		1	$15 \mu \mathrm{H}$	AB	6478．	VCE PAAIHW105M	J	$50 V\{(N, p)$	AE	
1403	UF，QFT7， 60000	4	$120 \mu \mathrm{H}$	AC	514			Electroytic		
La0s	aCILIEAPACTz2	5	Delay Lies	Ar	C423，	VCEACIA 7CWZ27M	3	$220 \quad 160$	$A C$	
L403	RCILPODSACE2Z	4	1909Hz Pliter	AI	1609			Esectrotytic		
Cabls．	Ve．ank 100k ohoo	1	10山H	AII	2424,	VCCS SPA 2 HL 4 TGK	1	$4 x_{p} 500 v$	$A A$	
BOZ					1691			Ceramic		
$\triangle \mathrm{cor}$	RCILF0087CE22	1	SlmeFilter	AL	casb，	VCEAGAASCW4Y7M	1	$470 \quad 16 \mathrm{~V}$	$A C$	
	or				442			Electrolytic		
	RCILFOQ日gCEzZ	1		Ak	c504	VCERGAJVW107M	1	v00 35V	AC	
－19513	VP－XF10TK0600	2	\＄00y 4	Al				Eleverytic		
$\underset{\substack{1808}}{1}$					C505	VCEAGAIVW4 7GM	$)$	4π 35v	Ag	
			－					Electrolytic		
					CST2	VLEAGA－EWICEM	1	1000 25V	AD	
FILTERS					$\begin{array}{r} \text { t527, } \\ 718 \\ \Delta c 701 \end{array}$		2	Electrolytic 470 p 100 V	AA	
25201	RFILCOI37CEE2	1		AH				Ceranitic		
			Wave filter	AH		MC－92020 DCERE	，	0，1 ACI25V	$A E$	
（2F－3i¢）	RFILCOR2日TAZZ	1.	Sound Take－0ff	AD				Di suek		
	on	，	Suun rakeor	A0	C31	VCKYPA 2 HE 157 K	，	0.0015 500V．	$2 \times$	
	8FILCOOM CEzz	J		AE				Cerarsic		
CFFAft	RFILCOO 3 CE22	1	45MH／LTrap	4 E	C720	VCTAGATENS37M	J	330－25v	AC	
CFEart	PFILCA0005CE22	1	503khz	AF				Elechiolytic		
					$\mathrm{Cl25}$	VCEAGAT VNAT7M	1	470 3EV	AD	
TRANSFORMERS					CnOS	VCESRATIWGTAM		0.47 Sav （4，F）		
					\％		$A C$			
$\begin{array}{r} \Delta \text { T701 } \end{array}$	RTANF0ニ1 6 CEZZ RCILVO11BCEZZ	1	Prswen Tramblorme	AV		Cals	VCTS AA1HW225M	，		Al
		1	Band Pass Fitoor	AO	－31）	$\begin{aligned} & 50 y \text { TN DI } \\ & \text { Efectralylic } \end{aligned}$				
					$\begin{gathered} \text { CB17, } \\ 1319 . \\ 1803 \\ 67502 \end{gathered}$	VCEAGAICINTOTM		16 V	$A B$	
CONTROLS					$\begin{array}{r} 1399 \\ 1803 \\ 67502 \end{array}$	VCEAGATAWJ37M	1	Electrolytic		
R214		1	TDP何 REAGC					230 tov	40	
Prit	RNK＝34269［Ez2	1	T00k（B）AFT	A晶				Lectrolytio		
\％462	RUH－852920E22	1	T0k（0）srightness	AK						
			10e（0）Sub－anght：							
			10k（B）Colet							
			Toks（1）Tant							
			10k（b）Mciphe							
81303	Inydr－3．32056828	t	10 kr （5）Audio Level	AB						

RESISTORS				
R654	VRS-VV3L83.90J	J	$\begin{array}{\|ll} 39 & \text { 3W } \\ \text { Oxide Film } \end{array}$	AB
$\triangle R 655$	VRN-VV3ABR 331	s	0.33 1W Metal Coating	AA
$\triangle \mathrm{R} 56 \mathrm{f}_{\text {, }}$	VRN-VV SAB IRO1	1	1 lw	AA
$\triangle 661$			Metal Coating	
$\triangle \mathrm{R} 657$	VRS-VV3083311	1	330 LW	AA
\triangle R658	VRS-SV2HC100J	,	$10 \quad 1 / 2 \mathrm{~W}$	AA
			FROxide Film	
$\triangle \mathrm{R} 662$	VRS-SV2HC1033	3	10k 1/2W FR Oxide Film	AA
$\triangle \mathrm{R} 664$	VRN-VV 3 ABR 471	1	0.47. 1 w	AA
			Metal Coating	
A \triangle R 665	VRD-RA2BE 6831	1	68k $\substack{\text { 1/8WW } \\ \text { Carbon }}$	AA
A \triangle R666	VRD-RA2BE473J	1	47k 1/8w	AA
			Carbon	
$\triangle R 754$	VRS-VV3L83313	,	$3303 \mathrm{~W}$ Oxide Film	AB
$\triangle \mathrm{R} 759$	VRS-SV2HC 515	,	$150 \quad 1 / 2 \mathrm{~W}$ FR Oxide Film	AA
SWITCH				
SW751	QSW-B0006CEZ2	1	Horiz: Centering	$A C$
MISCELLANEOUS PARTS				
F8651,	RBLN-0037CEZZ	J	Ferrite Bead	$A B$
$\begin{aligned} & 652, \\ & 751 \end{aligned}$				

INTEGRATED CIRCUITS				
CCl_{4}	RH-IX 1245 CEZZ	1		AP
ic2	RH-iX0666CEZZ	1		AL
163	RH-iX03411 CEZZ	1		AF
lCs	RH-iX0822CEZZ	1		Az
166	RH-i×082.1CEZZ	1		AY
167.	VHITC 40 H 368 P ?	1		AK
8 109	VHITCHCUO4P-1	1		AE
IC10	RH-iX 1508 CEZZ	,		AL

Rel. No.	Part No.	\star	Description	Code
TRANSISTORS				
Q1	VS 2SA $1015 \mathrm{Y} /-1$	1	2SA1015 (Y)	$A C$
Q2.	VS 2SC2308Cl-1	J	2SC2308	$A B$
Q4.	VS 2SC945 AQ/-1	J	2SC945A(Q)	$A B$
DIODES				
DA1.	RH-DX0326 CEZZ		Diode Array	
DA2,	RH -DX03 25 CEZZ	J	Diode Array	AK
PACKAGED CIRCUIT				
X1	RCRS 80081 CEZ2	1	Crystal	AH
X2	RFILA0047 CEZZ	1		$A G$
MP1	RMPTC0281.CEZZ	d	Resistor Array	$A E$
MP2	RMPTC0282CEZZ	1	Resistor Array	$A C$
COIL				
- 41	VF-XF3R3K0000	J	$3.3 \mu \mathrm{H}$	$A B$
CAPACITORS				
C1	VCEAGA OJW 107M	J	1006.3 V	AA
C9	VCE SAATHW 225 M	J	Electrolytic 2.250 V (N.P)	$A B$
			Electrolytic	
C50	RTO-H1008 CEZZ	J	Trimmer, 30p	$A C$
MISCELLANEOUS PARTS				
$\begin{array}{r} \text { FC1. } \\ 2 \end{array}$	RBLN-0036CEZZ	J	Ferrite Bead	AB

Ref, No.	PertNa.	+	Desciption	Code	Mel, No.	Part No.	*	Descriptian	Cade
PWB-E DUNTK6530WEVO SUBPOWER UNIT					PWE-F DUNTK6531WEVO SWITCH UNIT				
INTEGRATED CIRCUIT					SWITCHES				
ictal	VHIHAIT805 W-1	1		$A D$	$5 \mathrm{~W} / 1012$ 102	Q5W-K0020ctaz		TVIGAME, BESET	$A D$
TRANSISTOR									
Q101	$\begin{array}{r} \text { Vsasc } 945 \mathrm{NP}+1 \\ \text { of } \\ \text { VS25C } 1815 \mathrm{GW}-1 \end{array}$	1	$\begin{aligned} & 2 \mathrm{SC9} 95 \mathrm{~A}(\mathrm{P}) \\ & 25 \mathrm{C} 1815(6 \mathrm{~F}) \end{aligned}$	43 $A B$					
					PWB-G DUNTK6532W			SOCKET UNIT	
DIODES					piones				
$\begin{aligned} & \text { Diof } \\ & \text { Dioz } \end{aligned}$	RHODXO324CEZZ WHD TSSI) $9 N=1$	5	155119	AC	$\begin{gathered} \text { D103, } \\ 104 \end{gathered}$	RMPTiof ox Cfiz	1 zener Diodv array		AE
					Socket				
CAPACITORS						Qsocnot facezz	1	\$ocker	AF
Cloa	VCE AVH TENZ2BM		220025 V Enctralytie	$\triangle E$				(Gama Conrrover)	
	VCEACATCOMAOTO		Deciralitic		PWW-	- DUNTK653		EVO SUB UNIT	
					\triangle Prier	FMPTEGD 266 CE22	J	Fastive Ccefficient Theremstor	AS
	TRANSFOR	ME							
Atior	RTINP 0 \& 1 CEz2	1	Powner	Ax					
	RELAY								
Arytol	RRiYUDO2 3CERZ	3	Hawner Reray	AH		Miscellaneo	UUS	PARTS	
					\triangle	प ACC D30iA CE5A QTANZ032GCELZ RRMCG 068acesa RRMCG Q583 CESA	1 4 2 1 1	5qeekel-是ohm AC line cold Antenna Firminal Boara intrared 凡emiote Contuol Unit GSme Contcoiles (4 pes)	Au A) AS BX AK

Ref. No.	Part No.	*	Description	Code	Ref. No.	Part No.	*	Description	Code
CABINET PARTS					3	CCABB 2088 WEVO	R	Cabinet Complete	BT
1	CCABA 2096 WEVO	R	Cabinet	BV	3-1	Not Available	-	Cabinet	-
			- Front					- Bottom (Game)	
1-1	Not Available	-	Cabinet - Front	-	3-2	GCOVA 0035 PEKA	R	Cover	$A F$
1-2	GDORF0096 PEKA	R	Door	AP	3-3	GLEGP9001 PEKA	R	Leg, Top (4 pcs)	AE
1-3	GMADT0046PEKA	R	Window	AK	3-4	G LEGP9002 PEKA	R	Leg, Bottom (4 pcs)	AF
1-4	H DECQ 0015 PESA	R	LED Decoration	$A X$					
1-5	HINDP0026PEKA	R	Indication Plate (in Door)	$A E$	4	GDORF0093PEKA	R	Door	AS
$1-6$	HINDPOOS 1 PEKA	R	Indication Plate (in Door)	$A G$	5	GCABB 2031 PEKA	R	Cabinet - Rear	BQ
$1-7$	IBTN-0043PEKD	R	Button, Power	AF	6	GCOVA 0034 PEKA	R	Socket Cover	AK
$1-8$	HPNLCO038PEKJ	R	Panel	AS					
2	CCABA 2095 WEVO	R	Cabinet Complete - Top (Game)	BK			-		
2-1	Not Available	-	Cabinet - Top (Game)	-					
$2-2$	JBTN-0059PEKA	R	Button, Select	AK					

Ref, No.	Part No.	$*$	Description	Code

RRMCG0683CESA GAME CONTROLLER				
1	95156-5106-6	1	Controller Cabinet. Top (W/ Controiler Overiay)	AL
2	$95156.7378-5$	1	Contraller Cabinet, Actrom	AE
1	95156-7579.A	t	Control Pad Actuator	AC
4.	$95156-0599.8$	1	4/B Button Actuator	AA
5	$95556-759 \mathrm{~B}-\mathrm{C}$	1	Controlles Cable (Wi7P Plug)	AX
5	$95156-0900-\neq A$	1	A/B Button Contact	AO
7	$95156-8233.6$	1	Control Pad Contact	AE
8	$95156-8235 \cdot A$	1	Selecustan Comzact	AC
9	$95156-W 326-A$	4	$\text { Screw, } 2 \times 8$	AA

PACKING OF THE SET

- Setting positions of the knobs

Prightness tontrol.	5190
Color contiol	5/90
Tinticontro	Hestivopisor
petore lomitol	10070
TVIEATV SWITCh	TV
Aging switch	OfF
Cassette Holder	Relpase

- CAUH0011PEZZ
Solety Caid

1GGAN-004BPEZZ
Guarantee Card
*TIN 5-6260PEZZ
Oporation Manual

